
Dynamics of an assembly of finite-size Lennard-Jones spheres

P. Singh
Mail Stop J576, Engineering Sciences and Applications, Energy and Process Engineering, Los Alamos National Laboratory,

Los Alamos, New Mexico 87545
~Received 19 May 1995; revised manuscript received 18 December 1995!

The time-averaged Fourier spectra of the number density, velocity, and force fields are obtained numerically
for an assembly of spherical particles interacting via the Lennard-Jones potential. The magnitude spectra
determine the dominant wave numbers, and the phase difference between the Lennard-Jones force and number
density spectra determines the nature of the particle dynamics. The latter is used to show that for every wave
numberk there is a critical frequencyvc(k), such that whenv,vc(k) the phase difference isp/2 and when
v.vc(k) the phase difference is2p/2. The ratio of the frequency and the wave number at which the phase
difference changes sign is used to define an effective sound speed for the particle system. The effective sound
speed is shown to be a function of the dimensionless wave number, and is locally minimum at the same
dimensionless wave numbers for which the static structure factor is minimum. It is also shown that the
dynamical response of the particle system for waves with speeds greater than the effective sound speed is
similar to the response of the hyperbolic systems of equations, and for waves with speeds smaller than the
effective sound speed the response is similar to the response of the elliptic systems. The convection effects are
shown to be of the same order of magnitude as the Lennard-Jones forces, and the change of type of the
equations from hyperbolic to elliptic occurs when the magnitude of the convection term is comparable to the
magnitude of the Lennard-Jones force term. It is also shown that the change of type cannot occur in a theory
where the convection term is neglected.@S1063-651X~96!02106-X#

PACS number~s!: 47.35.1i, 05.60.1w

I. INTRODUCTION

A detailed study of the number density, velocity, and
force fields of particle systems, e.g., suspensions, simple liq-
uids, etc., is important for the fundamental understanding of
the dynamical behavior of these systems. The nature of the
number density and velocity fields has been studied exten-
sively in the past, both experimentally by using diffraction
techniques and numerically by simulations of model fluids
~Verlet @1#, Chandler@2#, Hansen and McDonald@3#, Boon
and Yip @4#, Pusey@5#, Wai et al. @6#, and Wignallet al. @7#,
see these papers for additional references!. These studies
have shed considerable light on the mechanisms that are im-
portant in determining the microscopic structure of the par-
ticle distribution, and have also related the microscopic
structure to the macroscopic properties of these systems.
Specifically, at length scales comparable to the particle or
atomic diameterD, the spatial distribution of particles is
nonuniform. The spatial nonuniformity of the particle distri-
bution is quantified in terms of the radial distribution func-
tion, which is an oscillating function of the distance from the
reference particle, and its Fourier transform. From these
studies we also know that there are many common features
between the radial distribution functions of fluidized suspen-
sions~D;1022–1027 m! and simple liquids~D;10210 m!,
even though the particle diameters differ by several orders of
magnitude~also see Gingrich@8#, Kruh @9#, Yarnell et al.
@10#, Pusey@5# Wai et al. @6#, Wignall et al. @7#, Hansen and
McDonald @3#, Ottewill @11#, Boon and Yip@4#, Singh@12#,
and Singh and Joseph@13–15#, for a detailed discussion and
additional references!. The fact that the radial distribution
functions of these mechanically different systems are the
same suggests that a comprehensive understanding of any

one of these systems can also lead to a better understanding
of all particle systems.

In this paper, our main goal is to study the structure con-
tained in the spatial and temporal distributions of the number
density, velocity, convection, and force fields for an assem-
bly of particles interacting via the Lennard-Jones potential.
For a finite number of particles in a periodic domain these
distributions were computed numerically by integrating the
equations of motion. The particle trajectories and the distri-
butions, in general, are four dimensional, i.e., depend on
space and time, and thus the computational effort required to
obtain the correlation functions of these distributions are
enormous. For isotropic systems, however, the radial sym-
metry can be exploited by averaging over the solid angle,
and accurate estimates of the correlation functions can be
obtained from a relatively small data set.

For a particle system the phase of the number density
distribution is related to the actual particle positions. The
phase, therefore, changes constantly with time as the par-
ticles constantly move around in a fluid. Furthermore, for an
isotropic system the phase of a distribution by itself isnot
very important because the macroscopic equilibrium proper-
ties of these systems are related only to the correlation func-
tions that are independent of the phase. However, our nu-
merical results show that the phase difference between two
independent distributions, such as the number density and
Lennard-Jones force fields, contains valuable information
about the particle dynamics. In particular, we show that the
phase difference between the Lennard-Jones force and the
number density fields is a function of the wave number and
frequency. Whenv,vc(k) the phase difference is approxi-
matelyp/2 and whenv. vc(k) it is approximately2p/2,
wherevc(k) is a critical frequency for the particle system
that depends on the wave number and the system parameters.
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We will show later in this paper that the phase difference
between the number density and the Lennard-Jones force
fields changes sign at the dimensionless wave numbers for
which the convection term is of the same order of magnitude
as the Lennard-Jones force term. The critical frequency
vc(k) at which the phase difference changes sign can be
used to define a characteristic sound speed for the particle
system. Our numerical results also show that the qualitative
form of the Lennard-Jones force field forv,vc(k) is differ-
ent from its form forv.vc(k) and the mathematical type of
the governing equations for the particle system changes at
v5vc(k). Specifically, it is shown that the area-averaged
model equations of the particle system for waves with speeds
greater than the effective sound speed are hyperbolic, and for
waves with speeds smaller than the effective sound speed are
elliptic. This is a fundamental change in the model equations
because for the elliptic systems the local solution depends on
the overall distribution in the domain, but for the hyperbolic
systems the local solution depends only on the distribution
along the upstream portion of the local characteristic.

In Sec. IV, we will show that in a theory where the con-
vection term is neglected the change of type predicted from
the direct numerical simulations cannot occur because the
momentum equation in this case contains only two terms,
and the number density, velocity, and force spectrums are
linearly related. Therefore, the change of type of the
Lennard-Jones particle systems can be predicted only in a
mathematical model where the nonlinear convection term is
included.

Finally, we note that when the correlation functions are
obtained for a distribution the phase of the distribution is
lost, and therefore the phase difference between two distri-
butions cannot be studied if weonly have access to their
correlation functions. Also note, in general, both the distri-
butions and the phase differences are three-dimensional. For
isotropic systems, however, by definition all properties, in-
cluding the phase difference distribution, must be the same
along all directions. Thus the phase difference for an isotro-
pic system can be studied in terms of one-dimensional dis-
tributions. We shall see later that this study of the phase
difference can be conducted in terms of the one-dimensional
area-averaged distributions used by Singh@12# and Singh
and Joseph@13–15# in their study of the spatial distribution
of particles in fluidized suspensions.

II. THREE-DIMENSIONAL AND ONE-DIMENSIONAL
AREA-AVERAGED DISTRIBUTIONS

We begin with a brief description of the three-
dimensional distributions and their correlation functions used
for describing the spatial arrangement of particles. The num-
ber density function specifies the coordinates of all particles
in the system.

r~r ,t !5(
i51

n

d„r2Ri~ t !…, ~2.1!

wherer5Ri(t) is the position vector of the center of thei th
particle at timet,n is the number of particles in the system,
andd is the delta function~see Hansen and McDonald@3#!.
Alternatively, the correlation functions and their Fourier

transform can be used to describe their relative spatial ar-
rangement, and the overall structure of the spatial distribu-
tion. For example, given a particle at the origin of the coor-
dinate system, the radial distribution functiong~r ,t!
represents the probability of finding another particle at dis-
tancer from the origin. By definition,g~r ,t! is given by

g~r ,t !5E r~r1r 8,t !r~r 8,t !dr 8. ~2.2!

Note in obtaining the correlation function, we havelost the
phase information contained in the number density distribu-
tion which, as we shall see later, can be used to obtain im-
portant information about the dynamical behavior of the par-
ticle systems.

By taking the Fourier transform of the above equation and
using the convolution-multiplication theorem, the above re-
lation reduces to

g~k,t !5ur~k,t !u2, ~2.3!

where the dynamic structure factorg~k,t! is the three-
dimensional spatial Fourier transform ofg~r ,t!, r~k,t! is the
Fourier transform ofr~r ,t!, andk is the wave number. In this
article, we will use the same symbol to denote the distribu-
tion and its Fourier transform, and distinguish between the
two by the arguments.

When the time average of the distribution function is ra-
dially symmetric it takes the following simplified form:

^g~ ur u!&5^g~r !&5 lim
T→`

1

T E
0

T

g~r ,t !dt, ~2.4!

where^ & denotes the time average. Also note when^g~ur u!& is
radially symmetric a relation similar to~2.3! hold for the
time-averaged quantities because the Fourier transformation
is a linear operation, i.e.,

^g~ uku!&5^ur~ uku!u2&. ~2.5!

The time average ofg~k,t!, i.e., ^g~k!&, is called the static
structure factor.

Next we define the area-averaged number densityN(z,t)
on the planez to be

N~z,t !5E
2`

` E
2`

`

r~r ,t !dx dy. ~2.6!

The above mapping betweenN(z,t) andr~r ,t! is, in general,
not invertible because the detailed information about thex
and y coordinates of the particles is lost during the area
averaging. However, when the autocorrelation function of
r~r ,t! is radially symmetric, i.e.,g~r ,t!5g~ur u,t!, it is easy to
show that

g~ uku,t !u5
1

4p2 uN~k,t !u2, ~2.7!

whereN(k,t) is the one-dimensional spatial Fourier trans-
form of N(z,t) ~see Singh and Joseph@15# for details!.
Therefore, in this special case the autocorrelation ofN(z,t)
is equivalent tog~ur u,t!. Also note that whenr~r ,t! is not
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radially symmetric, but its time-average^r~r ,t!& is radially
symmetric, then a relation similar to~2.7! holds for the time-
averaged quantities

^N~k!&5 lim
T→`

1

T E
0

T

N~k,t !dt

5 lim
T→`

1

T E
0

TE
z
N~z,t !exp~ ikz!dz dt

5 lim
T→`

1

T E
0

TE
z
F E

x
E
y
r~r ,t !dx dyGexp~ ikz!dz dt

5E
r
F lim
T→`

1

T E
0

T

r~r ,t !dtGexp~ ikz!dx dy dz

5E
r
^r~r !&exp~ ikz!dr5E

r
^r~ ur u!&exp~ ikz!dr

52p^r~ uku!&, ~2.8!

wherei5A21. Later in this paper, we will use~2.8! for the
interpretation of data obtained for our numerical simulations,
and also to understand the results of diffraction studies~see
the Appendix!. A detailed study of the area-averaged distri-
butions is also important becauseonly the Fourier transforms
of the area-averaged distributions are measured in diffraction
studies. Another advantage of working with the area-
averaged distribution is that the average momentum balance
perpendicular to the averaging plane can be studied in terms
of the area-averaged acceleration and forces acting on the
particles in that plane.

In order to study the time evolution of the phase differ-
ence between two distributions we must work with the dis-
tributions, and not their correlations, because when the cor-
relation functions are calculated the phase information is
lost. Furthermore, the distributions such asr~r ,t! andu~r ,t!
and their phase difference distributions are three dimen-
sional. Therefore for anisotropic systems the phase differ-
ence must be studied along three mutually perpendicular di-
rections. For isotropic systems, however, the time average of
the phase distribution along the three perpendicular direc-
tions must be the same; therefore it is sufficient to study the
phase distribution along one fixed direction. The phase dis-
tribution of a three-dimensional distribution perpendicular to
the averaging plane is preserved in the area-averaged distri-
bution, e.g., the phase ofr~r ,t! along thez direction is pre-
served inN(z,t), and therefore the phase difference distribu-
tions can be studied in terms of the area-averaged
distributions, as we do in this paper.

III. EQUATIONS OF MOTION

We begin this section by presenting the governing equa-
tions for the particles, and the numerical discretization
scheme used to integrate these equations. The momentum
conservation equations for then particles inside the compu-
tational domain can be written as

m
dui
dt

5f i~ t !, i51,...,n, ~3.1!

whenm is the mass of one particle,ui is the velocity of the
i th particle, andf i(t) is the force acting on thei th particle at
time t. In a numerical solution, since the locations of all
particles in the domain are known,f i(t) for a system of
Lennard-Jones particles can be computed by evaluating the
following expression:

f i52
48e

D2 ( 8
j51

n

~r i j
21320.5r i j

27!
r i j
r i j

, ~3.2!

wheree is the depth of the potential well at its minimum,D
is the effective Lennard-Jones particle diameter,r i j is the
vector from the particlei to the particle j , and r i j is the
magnitude of the vectorr i j . Also note that the termi5 j is
not included in the above summation. We will assume that
there are 864 particles inside a cubic computational domain
with sidesL510.229D. This corresponds to a reduced den-
sity r*5(nD3/L3)50.807 26. We will also assume
«5119.8kB , where kB is the Boltzmann constant,
m56.63310226 kg and D53.405310210 m; these values
correspond to real Argon.

A fourth order scheme is used to discretize the momen-
tum equations for the particles~see Hansen and McDonald
@3# for details!. The force acting on the particlei is computed
based on all other particles in the computational domain and
their periodic images. At each of the six walls of the com-
putational domain, appropriate periodic boundary conditions
are imposed. The discretized equations are integrated nu-
merically in time until a steady state is reached. The steady
state kinetic energy of the particle system is controlled by
increasing or decreasing the particle velocities by a constant
factor. After the steady conditions are reached, at each time
step the particles’ coordinates and velocities, and the forces
acting on the particles are recorded in a data file. From this
recorded data the correlations of the number density, veloc-
ity, convection, and force fields are obtained during the post
processing phase. All correlations reported in this paper re-
mainedunchangedwhen the time step used in the numerical
integration scheme was reduced by a factor of five. Therefore
the correlations reported in this paper are independent of the
time step used.

Even though a direct numerical solution of then particle
Eq. ~3.1! in a periodic computational domain can be easily
obtained, it is advantageous to have a model that captures the
essential features of the particle system because the macro-
scopic properties of the particle system can be obtained more
easily from the model equations. To develop a model for the
particle system we need two equations: one for the conser-
vation of number density and the other for the conservation
of momentum. The conservation of number density is given
by

]r

]t
1“•J50, ~3.3!

where J~r ,t!5( i51
n u~r ,t!d„r2Ri(t)… is the velocity current

andu~r ,t! is the velocity of the particle whose center is atr
at time t. The conservation of momentum is given by
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m
dJ~r ,t !

dt
[m

]J~r ,t !

]t
1m

]

]xq
F(
i51

n

uqupepd„r2Ri~ t !…G
5m(

i51

n
du

dt
d„r2Ri~ t !…[F~r ,r!. ~3.4!

HereF~r ,r! is the force atr , andep is the unit vector along
the p-coordinate axis. In the above equation we have used
the notation that implies summation with respect to the re-
peated indices. We will again assume that the particles inter-
act with each other via the Lennard-Jones potential, and
therefore the exact force acting on the particles can be com-
puted when the particles’ coordinates are known. The second
term on the left hand side of the above equation is the famil-
iar convection term. Note Eq.~3.4! is mathematically equiva-
lent to Eq. ~3.1!. In fact, we have simply used a compact
notation to rewrite the set ofn particle Eq.~3.1!.

Equations~3.3! and ~3.4! are not very useful unless a
model is available to independently estimate the average
form of the right hand side of~3.4!. Several theoretical mod-
els have been proposed to estimate the right hand side of
~3.4! which have been partially successful in predicting the
essential features of the dynamic structure factor~see Hansen
and McDonald@3#, and Boon and Yip@4# for a detailed
discussion and additional references!. In these theories, how-
ever, the nonlinear convection term is considered to be small
andnot included. It is clear from~3.4! that when the convec-
tion term is dropped the force distribution is linearly related
to the time derivative of the velocity current which in turn is
linearly related to the number density distribution by Eq.
~3.3!. That is, the equation system~3.3! and ~3.4! is linear,
and hence its solution can be described in terms ofr, J, orF.
The usual choice is to describe it in terms of the dynamic
structure factorur(k,v)u2 which can be measured directly in
a diffraction study. Also note that in the linear case no addi-
tional information can be obtained from the phase difference
distributions. In this paper, we obtain the convection and
Lennard-Jones force terms from direct numerical simulations
which show that the two terms are of comparable magnitude.
The phase difference between the Lennard-Jones force and
number density distributions is also obtained from the direct
numerical simulations. As we have noted earlier, the area-
averaged distributions are used in this paper because the
phase difference between the distributions can be studied
only in terms of the area-averaged distributions.

The governing equations for the area-averaged number
density and velocity fields can be easily obtained by averag-
ing Eq. ~3.3! and thez component of~3.4! over thez5const
planes. The mass conservation equation becomes

]N

]t
1

]J

]z
50, ~3.5!

where J(z,t)5*2`
` *2`

` J~r ,t! dx dy is the average velocity
current along thez direction. The equation for the momen-
tum conservation becomes

]J~z,t !

]t
5F(

i51

n
f z
m

d„z2Zi~ t !…G2
]

]z F(
i51

n

uud„z2Zi~ t !…G
5
F~z,t !

m
2

]

]z F(
i51

n

uud„z2Zi~ t !…G , ~3.6!

whereF(z,t) is the area average of thez component of the
forces acting on the particles withz5Zi(t). Note for the
Lennard-Jones particle system,F(z,t) dependsonly on the
instantaneous particles’ centers. i.e.F(z,t)5F„N(z,t)…. The
above equations for the area-averaged distributions are exact,
and hence suggest the terms we must model to obtain the
time evolution ofJ(z,t).

The convection terms with derivatives along thex andy
directions:

]

]x
@uxuN# and

]

]y
@uyuN#,

present in thez component of the momentum equation, drop
out when averaging is done over thez5const planes. There-
fore the area-averaged momentum equation along thez di-
rection is decoupled from the area-averaged momentum
equations along thex and y directions. On the other hand,
the three components of the momentum equation coupled via
the nonlinear convection term are decoupled only when the
magnitude of the convection term is negligible compared to
the other terms in the momentum equation. Hence it is ad-
vantageous to work with the area-averaged equations.

In the remainder of this section, we define the Fourier
transforms of all relevant distributions, including those
present in Eqs.~3.5! and ~3.6!. The average forms of the
spectra presented in this paper were obtained by averaging
over 100 000 samples. The area-averaged longitudinal force
spectrum is important because it appears in Eq.~3.6!:

F~k,v!5(
j51

n

f z j~ t !exp@ i „kzj~ t !2vt…#. ~3.7!

The transverse force spectrumFt(kv):

Ft~k,v!5(
j51

n

f y j~ t !exp@ i „kzj~ t !2vt…#, ~3.8!

is not relevant to the area-averaged equations because it acts
in the averaging plane. However since the particle dynamics
is actually three dimensional, we will also study its form.

The longitudinal convection spectrum:

Cz~k,v!52 ik(
j51

n

uj
2~ t !exp@ i „kzj~ t !2vt…# ~3.9!

appears in Eq.~3.6!, and therefore is relevant to the particle
dynamics. As we have noted earlier, our numerical simula-
tions show that for the Lennard-Jones particle systems its
magnitude iscomparableto that of the Lennard-Jones force
term.

The longitudinal current spectrum
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J~k,v!5(
j51

n

uj~ t !exp@ i „kzj~ t !2vt…#,

and the number density spectrum are related by Eq.~3.5!,
i.e., ikJ(k,v)5 ivN(k,v), and therefore it is sufficient to
study the distribution ofN(k,v).

By using the above definitions, we can write the Fourier
transform of Eq.~3.6! as

ivJ~k,v!5
1

m
F~k,v!2Cz~k,v!. ~3.10!

In the next section, the area-averaged momentum Eq.~3.10!,
and thus also 3.6!, is verified by independentlycomputing
the left and right hand sides for our numerical simulations. It
is shown that for the numerical solutions, the averaged spec-
tra of the left and right hand sides are approximately equal
and the average phase difference between the terms is 0 orp,
as required by Eq.~3.10!. The area-averaged Eq.~3.6!, there-
fore, correctly models the key features of the exact momen-
tum conservation.

Here it is also important to note that if the convection
term in Eq. ~3.10! is dropped then the phase relationship
between the velocity current and the Lennard-Jones force is
fixed. In this degenerate case the phase contains no additional
information about the particle dynamics, and can be dropped.
However, as we will see later, when the convection term is
not negligible the phase difference between the number den-
sity and Lennard-Jones force fields is important, but is an
unknown to be determined by solving the governing equa-
tions, as we do in this paper.

The Fourier spectra we have defined above are complex:
therefore, in general, we must study both magnitude and
phase of these spectra. However, for the system on hand, the
phase spectra are related to the particles coordinates, and
therefore no additional information about the particle dynam-
ics can be deduced from the phase spectra. The phase differ-
ence between two independent spectra, however, can be used
to further understand the particle dynamics. In order to un-
derstand this idea, we first study the phase difference be-
tween the number density and longitudinal velocity current
spectra. This can be easily obtained from Eq.~3.5!

arg„J~k,v!…2arg~N~k,v!!50

where arg~ ! is the argument of a complex number. To prove
that Eq. ~3.5! is satisfied by the numerical simulations we
must also show that the above relationship between
arg~N(k,v)! and arg~J(k,v)! holds. The phase difference
betweenN(k,v) andJ(k,v) is fixed because there areonly
two terms in Eq.~3.5!.

The momentum equation, however, contains three terms,
and thus the relative sign of any two terms can change as the
magnitude of the third term changes. A simple analysis of
Eq. ~3.5! and~3.10! shows that the phase difference between
N(k,v) and F(k,v) must be6p/2, and betweenF(k,v)
andCz(k,v) must be 0 orp. Clearly, these conditions must
be satisfied by the numerical solution, otherwise the particle
system cannot be modeled in terms of these equations. Also
note, ifCz(k,v) is relatively small, as is the case in the long
wave or continuum limit, then the phase difference between

N(k,v) andF(k,v) must be2p/2. However when the con-
vection term is neglected there are only two terms in Eq.
~3.10!: F(k,v) andJ(k,v). But, as we have noted earlier,
this leads to a relatively simple case because we getF(k,v)
5 ivmJ(k,v), and hence thesameinformation is contained
in F(k,v), J(k,v), andN(k,v). Therefore in a theoretical
model where the convection term is neglected the dynamic
structure factor is sufficient to completely describe the model
system. However since our direct numerical simulations for
the Lennard-Jones particle systems show that the convection
term is not negligible, to completely describe the particle
dynamicsN(k,v) andF(k,v), and the phase difference be-
tween them, must be known. Here it is important to note that
in the diffraction studies, and also in the direct molecular
dynamic simulations, the dynamic structure can be obtained
directly without any knowledge ofF(k,v), Cz(k,v) or the
phase difference. But, as we will discuss in the next section,
F(k,v), Cz(k,v) and the phase difference are essential for
understanding the detailed dynamics.

In general, the phase difference between the number den-
sity and the Lennard-Jones force spectraPFN is a function of
k andv. For our numerical results, the functional form of
PFN is obtained as follows:

PFN~k,v![argF K F~k,v!

N~k,v!

uN~k,v!u
uF~k,v!u L G .

IV. RESULTS

We have already mentioned in the previous section that
the numerical results were obtained by integrating the system
of Eqs.~3.1! and~3.2! for the particles in time. The particles’
coordinates, velocities and force fields were computed at
each time step and recorded in a data file. The Fourier spec-
tra were obtained later by processing this data file. The av-
eraged spectra presented this paper were obtained by averag-
ing over 100 000 samples. The spectra are studied by
plotting isovalues in the two-dimensional (k,v) domain, and
when necessary by plotting one-dimensional sections fork or
v fixed.

We begin with a brief discussion of the area-averaged
number density spectrum which for an isotropic system, as
we have noted earlier, is the same as the square root of the
dynamic structure factor~see Sec. III!. The dynamic struc-
ture factors obtained for this study are the same as in the
previous studies~see Boon and Yip, and Hansen and Mc-
Donald for a detailed discussion and additional references!,
and so we will only mention its key features. In Fig. 1~a! we
have plotteduN(k,v)u for T5104 K, and the detailed pro-
files forv50 are shown in Fig. 1~b! for T5104 K and 77 K.
From these figures we note that for both cases the maximum
is for v50. The maximum value is smaller for the case with
higher temperature, andk at the maximum is slightly smaller
for the case with higher temperature; forT5104 K the maxi-
mum value of 1628 is atkD56.59, and forT577 K the
maximum value of 1706 is atkD56.61. Furthermore, for
v50 there are secondary peaks, but they are not integer mul-
tiples of the main peak. From Fig. 1~b!, where the static
structure factors for the two cases are shown, we note that
the dimensionless minima are the same as the set of zeros of
the blockage function~see the Appendix!. From the isovalue
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plots shown in Fig. 1~a! we also note that the peaks and
valleys of uN(k,v)u become progressively less pronounced
with increasinguvu. Also note that the numerical results ob-
tained for kD,(2pD/L) are sensitive to the size of the
computational domain, and hence must be verified by chang-
ing the ratio (L/D). In this paper, we will simply ignore the
numerical results obtained forkD,(2pD/L).

From Eq.~3.6! we know that the time derivative of the
local velocity current contains two contributions: one is the
Leonard-Jones force field that accounts for the particle-
particle interactions, and the other is the convection contri-
bution. The first contribution depends on the positions of the
particles, and can be computedexactlywhen the particles’
coordinates are known. However, when the particles move
the Lennard-Jones forces acting on the particles change, and
therefore the spectra of the Leonard-Jones force field depend
on the motion of the particles. In the next few paragraphs, we
present the spectra of the longitudinal and transverse compo-
nent of the Lennard-Jones force fields, and then will study
the spectra of the convection term.

The averaged Fourier spectrum ofuF(k,v)u is shown in

Fig. 2~a! for T5104 K and the static Lennard-Jones force
spectrauF(k)u5u*F(k,v)dvu are shown in Fig. 2~b! for
T5104 K and 77 K. From these figures we note that the
magnitudes of bothuF(k,v)u and uF(k)u→0 in the limit
kD→0, which shows that in the long wave limit the
Lennard-Jones force acting on the particles approaches zero.
We also note thatuF(k,v)u is a symmetric function ofv, and
that there are three maxima of approximately equal magni-
tudes, two of which are located symmetrically about thek
axis and one is on thek axis. The maxima forT5104 K are
at ;~kD53.30, v69.1531012 s! and; ~kD56.59,v50!.
Note that the dominant peaks atv569.1531012 s andkD
53.3, correspond to traveling waves with wavelength;
1.90D. It is interesting to note that the wave number at these
dominant peaks is approximately one half of the wave num-
ber for the dominant peak ofuN(k,v)u. In addition to these
peaks, forT5104 K there are secondary peaks at~kD512.6,
v50!, ~kD517.40,v50!, and ~kD59.58,v569.6531012

s!. From these figures we also note that the secondary peaks,
for both v50 andvÞ0, become less pronounced with in-
creasing k. Finally, we note that the positions of the peaks

FIG. 1. ~a! Isovalues of uN(k,v)u for
T*50.872, ~b! sections ofuN(k,v)u for v50,
and the static structure factorsuN(k)u are shown.

53 5909DYNAMICS OF AN ASSEMBLY OF FINITE-SIZE LENNARD- . . .



and valleys along thek axis match the positions of the peaks
and valleys foruN(k,v)u. But, for uvu.0 only whenv is
smaller than a critical valuevc(k) the valleys ofuF(k,v)u
are at the blocked wave numbers. Also note that even for
uvu.vc(k) there is a well-defined structure inuF(k,v)u, but
its form is different. We will discuss the reasons for these
changes in the structure ofuF(k,v)u later in this section.

We next study the spectrum of the area-averaged trans-
verse forceuFt(k,v)u shown in Fig. 2~c! for T5104 K. From
this figure we note thatFt(k,v) is maximum at~kD55.39,
v59.631012 s!, but for v50 it is relatively small and the
structure we have seen inuN(k,v)u anduF(k,v)u is missing.
The qualitative structure ofFt(k,v) is therefore different
from the structure we have seen inN(k,v) andF(k,v). The
magnitude of the maximum and the values ofk andv at the

maximum are, however, comparable to their respective val-
ues forF(k,v). This implies that the transverse and longitu-
dinal Lennard-Jones force fields act to drive comparable
wave numbers at comparable frequencies.

The phase difference between the Lennard-Jones force
and number density spectraPFN(k,v) is shown in Fig. 3~a!–
~b! for two different values of the reduced temperature. From
these figures we note that for every wave numberkD.;2.0
there is a unique frequencyvc(k) at which the phase differ-
ence PFN(k,v) changes sign. Specifically, forv,vc(k),
PFN(k,v) is approximatelyp/2, and forv.vc(k) is ap-
proximately2p/2. This result for the direct numerical simu-
lations agrees with the result obtained earlier from Eqs.~3.5!
and~3.6! that the phase difference should be6p/2. Thus the
phase constraint required by Eqs.~3.5! and ~3.6! is satisfied

FIG. 2. ~a! Isovalues ofuF(k,v)u(D2m/48«)
for T*50.872,~b! the static Lennard-Jones force
spectra uF(k)u(D2m/48«) for T*50.872 and
0.643, ~c! isovalues ofuFt(k,v)u(D

2m/48«) for
T*50.872.
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for the numerical simulations. The ratioc(k)5vc(k)/k is
defined to be an effective sound speed of the particle system.
In Figs. 3~c! and 3~d! we have plottedvc(k) and c(k) as
functionsk for the two cases shown in Fig. 3~a! and 3~b!.
From these figures we note thatvc(k) increases approxi-
mately linearly withk, except close to the blocked wave
numbers where it is approximately constant or even de-
creases withk. The effective sound speedc(k), on the other
hand, is approximately constant, except close to the blocked
wave numbers where its value is locally minimum. Our nu-
merical results also show that the phases of the number den-
sity and the transverse force spectra arenot correlated.
Therefore the transverse force field is not driven byN(z,t).

The above results for the phase difference between the
longitudinal force and number density fields suggest that the
dynamical nature of the particle-particle interaction changes
fundamentally atv5vc(k). In particular, as we have noted
earlier, the local minima ofuF(k,v)u for v.vc(k) are dif-
ferent from the minima of the static structure factor. Along
the boundaryv5vc(k), the magnitude ofF(k,v) is locally
minimum, and thus the dynamics at these wave numbers is
dominated by the convection term in Eq.~3.6!. We may
therefore conclude that the dynamics of waves with speeds
greater thanc(k), and waves with speeds smaller thanc(k),
is fundamentally different.

To sort out the possible reasons for this change in the
particle dynamics, we next study the spectrum of the convec-

tion term uCz(k,v)u shown in Fig. 4. From this figure we
first note that the magnitude of the convection term is com-
parable to the magnitude ofF(k,v). However, forkD,;2
the convection term is relatively small, and therefore in the
long wave~hydrodynamic or continuum! limit the convec-
tion effects can be neglected. This result is in agreement with
the well-known results for this limit. But, forkD.2 the con-
vection effects are significant. Furthermore, for a givenk,
uCZ(k,v)u is maximum forv;vc(k), where the phase dif-

FIG. 3. The phase difference~in radians! betweenN(k,v) andF(kv), PFN(k,v), is shown.~a! Isovalues forT*50.872,~b! isovalues
for T*50.643,~c! for the two casesvc(k) is shown as a function ofk, ~d! for the two casesc(k) is shown as a function ofk.

FIG. 4. The magnitude spectrum ofCZ(k,v)(D
2m/48«) is

shown forT*50.872.
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ference betweenN(k,v) andF(k,v) changes sign. The con-
vection term, therefore, plays an important role in determin-
ing vc(k), and thus cannot be neglected in a theoretical
analysis of the particle systems.

Finally, in Fig. 5~a! we study the Fourier spectrum of the
sum of the two terms on the right hand side of~3.6!. Note in
obtaining the sum the phase difference of the two terms is
properly taken into account. From this figure we note that the
sum is maximum at; ~kD53.39,v561.0531013 s!, and
its secondary maximum is at~kD510.21,v561.0831013

s!. For v,vc(k), however, the sum is relatively small.
Therefore, the time derivative ofJ(k,v) is dominated by
waves traveling with speeds greater than the effective sound
speed. The spectrum of the left hand side of Eq.~3.6! was
also obtainedindependently, and is shown in Fig. 5~b!. A
comparison of Figs. 5~a! and 5~b! shows that the spectra of
the left and right hand sides of~3.6! for the direct numerical
simulations are approximately identical, including the posi-
tions of the primary and secondary maxima, and their values.
Finally, we note that the qualitative form of Fig. 5~a! is sig-
nificantly different from those of the Lennard-Jones force
and convection spectra shown in Figs. 2~a! and 4, respec-
tively. This change in the qualitative form is a consequence
of the fact that these two terms are of the same approximate
magnitude, but the phase difference between them for
v,vc(k) is p and for v.vc(k) is zero. Therefore for

v,vc(k) the right hand side of~3.6! is relatively small be-
cause the convection and Lennard-Jones terms cancel each
other. The fact that the sum of these two distributions is the
same as the velocity current distribution also demonstrates
that the distributions are correct.

V. CHANGE OF TYPE

We have noted in Sec. III that for a Lennard-Jones par-
ticle systemF(z,t) dependsonly on the instantaneous distri-
bution of N(z,t). The functional dependence ofF(z,t) on
N(z,t) however, is not known. For our numerical simula-
tions the averaged magnitude spectra of these distributions
were presented in the previous section, but the functional
relationship between the two is difficult to obtain from the
numerical spectra. In the previous section we also noted that
the phase differencePFN(k,v) betweenF(k,v) andN(k,v)
depends onk andv: it is 1p/2 for v,vc(k) and2p/2 for
v.vc(k). The physical and mathematical significance of
this change in the phase difference is difficult to understand
because the governing equations are highly nonlinear. In this
section we show that this change in the sign ofPFN(k,v) is
a consequence of the change of type of the governing equa-
tions, and then discuss the physical significance of this result.

In order to understand the mathematical significance of
the change in the sign ofPFN(k,v), we next do a simple
analysis of the governing Eqs.~3.5! and ~3.6!. We take two
approaches: in one we drop the nonlinear convection term
but carry the full form of the force term, and in the other we
keep the convection term, but linearize the force term. In
both cases the result obtained is the same. In the first ap-
proach we use the fact that the phase difference between
F(k,v) andN(k,v) is known to writeF(k,v) as

F~k,v!5expK 6 i
p

2
1 i arg@N~k,v!#L uF~k,v!u,

where the plus sign applies whenv,vc , and the minus sign
applies whenv.vc . We next substitute this form for
F(k,v) in the Fourier transform of the linearized~3.6!. The
resulting equation can be written as

ivJ~k,v!5expK 6 i
p

2
1 i arg@N~k,v!#L uF~k,v!u.

From the above equations,J(k,v) can be eliminated by us-
ing the Fourier transform of Eq.~3.5!: ik J(k,v)
5 ivN(k,v). The resulting equation, after some manipula-
tions can be written as

i
v2

k
N~k,v!5expS 6 i

p

2
1 i arg@N~k,v!# D uF~k,v!u.

This equation can be simplified further if we note

N~k,v!5exp~ i arg@N~k,v!#!uN~k,v!u,

and cancel exp~i arc[N(k,v)] ! from the two sides. After this
cancellation, we get

v2

a
5expS 6 i

p

2
2 i

p

2 D uF~k,v!u
uN~k,v!u

.

FIG. 5. ~a! The magnitude spectrum of the right hand side of
~3.6! times ~D2m/48«! is shown forT*50.872,~b! the magnitude
spectrum of the left hand side of~3.6! times ~D2m/48«! is shown
for T*50.872.

5912 53P. SINGH



The above equation can now be solved forv,

v5AkF uF~k,v!u
uN~k,v!uG

1/2

for v.vc

5 iAkF uF~k,v!u
uN~k,v!uG

1/2

for v,vc .

Therefore the characteristics are imaginary forv,vc , and
real forv.vc . This implies that the governing equations are
elliptic for v,vc , and hyperbolic forv.vc ~see Courant
and Hilbert@16#!.

In the second approach, we assume the following form for
F(z,t):

F~z,t !56K
]

]z
N~z,t !, ~5.1!

whereK.0 is the coefficient of linearization, and the minus
sign applies whenv.vc and the plus sign applies when
v,vc . Clearly, the above relationship betweenF(z,t) and
N(z,t) satisfies the two requirements we have stated earlier,
i.e., F(z,t) depends onN(z,t), and the phase difference be-
tweenF(z,t) andN(z,t) is 6p/2. Note in the long wave
limit Eqs. ~3.5!, ~3.6!, and ~5.1! with the minus sign are
mathematically identical to the equations in gas dynamics:
(]r/]t)1(]ur/]z)50; and (]ur/]t)1(]uur/]z
52c2(]r/]z), wherer is the density andc is the speed of
sound. The next step is to substitute the above form for
F(z,t) in ~3.6!, and find the characteristic directions of~3.5!
and~3.6! ~see Courant and Hilbert@16#, and Whitham@17#!.
It is easy to show that the characteristic directions are given
by

dz

dt
5u6A6~2K !.

Therefore, the characteristics are real, and the system is hy-
perbolic, when the minus sign is used in~5.1!. Since our
numerical results show that forkD,;2, the minus sign
holds for allv’s, in the long wave limit Eqs.~3.5! and~3.6!
are hyperbolic. The equations in gas dynamics are also hy-
perbolic. A direct comparison of~3.5! and ~3.6! with equa-
tions in gas dynamics shows that the change of sign in~5.1!
is equivalent to assuming that the functional dependence of
the pressure field on the gradient of the density field changes
sign.

The mathematical properties of the elliptic and hyperbolic
system of equations are well known, and are given in any
elementary book on the partial differential equations~see
Courant and Hilbert@16# and Weinberger@18#!. We briefly
note that for an elliptic system the local solution depends on
the overall distribution in the domain and the problem is well
posed only if it is posed as a boundary value problem. On the
other hand, for a hyperbolic system the local solution de-
pends only on the distribution along the upstream portion of
the characteristic passing through the point under consider-
ation. We remind the reader that the exact dynamics of the
system of particles is governed by Eq.~3.1!, andPFN(k,v)
is obtained by solving these equations. Therefore, there is a
fundamental change in the particle dynamics atv5vc(k)
which, in principle, can be observed in an experiment de-

signed to study the phase differences. These experimental
results for the phase differences can also be used to check the
validity of the Lennard-Jones model for the real fluids.

In conclusion, the above discussion suggests that the
change in the sign ofPFN(k,v) atv5vc(k) is a result of the
change in type of the governing Eqs.~3.5! and 3.6!. Further-
more, for kD.;2 ~or wavelengthl,;3D! the area-
averaged distributions for slowly moving waves are gov-
erned by an elliptic system of equations. This suggests that
the change of type is afinite size effect because it exists only
for wavelengths comparable or smaller thanD. It is, how-
ever, difficult to give aprecisereason from a physical point
of view for this fundamental change in the particle dynamics.
One possible explanation for this change is that as a particle
of diameterD moves, its motion is instantaneously felt
within the volume occupied by the sphere. In a theory based
on the particle centers this instantaneous transmission of the
change in the position and velocity of the particle center, up
to a distanceD/2 from the center, gives rise to the elliptic
behavior observed forl’s comparable or smaller thanD. For
long waves~kD,;2! this effect does not exist for any fre-
quency, and thus the response of the particle system in this
limit is consistent with that of a compressible fluid.

VI. CONCLUSIONS

We have studied the time-averaged Fourier spectra of the
number density, velocity, convection, and force fields for an
assembly of spherical particles interacting via the Lennard-
Jones potential. The results were obtained numerically by
solving the equations for the particles in a periodic domain.
A detailed study of the phase difference between the
Lennard-Jones force and number density spectra shows that
for every wave number there is a unique frequency at which
the phase difference changes fromp/2 to 2p/2. A simple
analysis shows that the change in the sign of the phase dif-
ference implies a change of type of the governing partial
differential equations from hyperbolic to elliptic. This funda-
mental change in the particle dynamics is also reflected in
the qualitative forms of the spectra. In particular, the maxima
and minima of the Lennard-Jones force field are the same as
for the static structure factor only for waves with speeds less
than the effective sound speed. Finally, we note that the con-
vection effects are of the same order of magnitude as the
Lennard-Jones forces, and therefore must be included in a
mathematical model of the particle systems. The numerical
results for the phase difference and convection spectrum are
interesting, and should be compared with the analytical re-
sults where the nonlinear convection term is retained as well
as with the experimental data for the real liquids. At present,
however, this comparison is not possible because these ana-
lytical and experimental results are not available.

APPENDIX

In this appendix we briefly discuss the results obtained by
Singh@12#, and Singh and Joseph@13–15# for the area frac-
tion, and their importance in the interpretation of the diffrac-
tion data. They have obtained the following expression for
the area fractionfa in terms ofN(z,t) ~see the derivation
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given in these references for a better physical understanding
of this equation!

fa~z,t !5E
2R

R

N~x1z,t !p~R22x2!dx, ~A1!

whereR is the radius of the particles. Using this expression
they have shown that whenN is the Fourier transform class,
then

fa~k,t !5
4pR3

3
Q~kR!N~k,t !, ~A2!

whereQ(kR)53@sinkR/(kR)32coskR/(kR)2# is the block-
age function andfa(k,t) is the Fourier transform offa(z,t).
Note thatQ(kR)5J1/2(kR)/kR, whereJ1/2 is the spherical
Bessel function of order 1/2. The set of zeros ofQ(kR) is:
2kR58.98, 15.45, 21.81,... . From~A2! Singh and Joseph
have concluded that when the number density is in the Fou-
rier transform class, then the dimensionless wave numbers,
kR, for whichQ(kR) is zero, areblocked~i.e., are missing!
in the spectrum of the area fraction. We would refer to these
wave numbers as ‘‘blocked wave numbers.’’

The above result for the area fraction is also useful in the
interpretation of diffraction data. Specifically, the angular
distribution of the scattered intensityI (u,t) can be related to
the area-averaged one-dimensional spatial distribution of the
area fraction, whereu is the angle at which the intensity is
measured. In order to show this, we start with the following
well-known expression that relates the spatial distribution of
the scattering densitys~r ,t! to the scattered~elastic! intensity
~see Cowley@19#!

I ~u,t !;U E
V
s~r ,t !exp~ ik•r !drU2.

Here the integral is over the scattering volumeV ands~r ,t! is
zero outside of the particle, and the angleu5sin21~kl/4p!
wherel is the wave length of the radiation used andk is the
wave number being explored. Let us assume that our coor-
dinate system is such thatk•r5kz, i.e., thez axis of the
coordinate system is parallel to the scattering vectork. Then,
the above expression reduces to

I ~u,t !;U E
z
F E

x
E
y
s~r ,t !dx dyGexp~ ikz!dzU2

5U E
z
sa~z,t !exp~ ikz!dzU2, ~A3!

wheresa(z,t)5*x*ys~r ,t!dx dy is the area average of the
scattering density. If we assume that the scattering density

s~r ,t!5s0 is uniform within the particles, then
sa(z,t)5ps0fa(z,t), where p is the area over which the
averaging is performed. In this case, after using~A2! we get

I ~u,t !;p2s0
2ufa~k,t !u25p2s0

2F4pR3

3 G2Q2~kR!uN~k,t !u2,

~A4!

whereQ(kR) is the form factor for a single particle. The
form factor is thesameas the blockage function because the
scattering density is uniformly distributed within the par-
ticles. Furthermore, from~2.8! we already know that when
^r~r !& is radially symmetric, then̂ur~k!u2& is proportional to
^uN(k)u2&. Therefore an estimate of^ur~k!u2& can be obtained
from the angular distribution of the time-averaged scattered
intensity ^I~u!&. Also note that even when̂r~r !& is aniso-
tropic ^I~u!& is related to the area-averaged distribution along
the scattering vector@see~A3!#. A complete picture of the
anisotropic distribution, however, is much more difficult to
obtain. But, in principle, its approximate form can be ob-
tained by using a deconvolution algorithm on a set of data
obtained for different orientations of the scattering vector.

The physical significance of̂I~u!& in ~A3! and ~A4! is
usually given in terms of the radially symmetric distribu-
tions. In particular, the time average of the angular distribu-
tion ^I~u!& is described to be the product of the form factor
and the radially symmetric structure factor. The form factor
of a single particle is then filtered out of^I~u!&, because it
does not have any dynamical significance, to give the struc-
ture factor. This explanation, however, fails to stress the fact
that ^I~u!& is related to the time average of the Fourier trans-
form of the area-averaged scattering density. Even more im-
portantly, it fails to emphasize that whens~r ,t!5s0 within
the particles, the zeros of^I~u!& are indicative of the funda-
mental property that the spatial Fourier transform of the area
covered by the particlescannot contain the blocked wave
numbers@see Eq.~A4!#. Finally, we note that if in the scat-
tering experiments weonlyhave access to the intensities, i.e.,
the magnitude squared of the Fourier transform of the distri-
bution functions, the phase of the distributionscannot be
studied experimentally which, as we shown in this paper,
contains important information about the dynamics of the
particle systems.

I wish to thank Dr. Todd Hesla for his constructive criti-
cism of the paper.
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