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The time-averaged Fourier spectra of the number density, velocity, and force fields are obtained numerically
for an assembly of spherical particles interacting via the Lennard-Jones potential. The magnitude spectra
determine the dominant wave numbers, and the phase difference between the Lennard-Jones force and number
density spectra determines the nature of the particle dynamics. The latter is used to show that for every wave
numberk there is a critical frequency.(k), such that whem<w(k) the phase difference is/2 and when
w>w.(k) the phase difference is /2. The ratio of the frequency and the wave number at which the phase
difference changes sign is used to define an effective sound speed for the particle system. The effective sound
speed is shown to be a function of the dimensionless wave number, and is locally minimum at the same
dimensionless wave numbers for which the static structure factor is minimum. It is also shown that the
dynamical response of the particle system for waves with speeds greater than the effective sound speed is
similar to the response of the hyperbolic systems of equations, and for waves with speeds smaller than the
effective sound speed the response is similar to the response of the elliptic systems. The convection effects are
shown to be of the same order of magnitude as the Lennard-Jones forces, and the change of type of the
equations from hyperbolic to elliptic occurs when the magnitude of the convection term is comparable to the
magnitude of the Lennard-Jones force term. It is also shown that the change of type cannot occur in a theory
where the convection term is neglect¢81063-651X96)02106-X

PACS numbds): 47.35+i, 05.60+w

I. INTRODUCTION one of these systems can also lead to a better understanding
of all particle systems.

A detailed study of the number density, velocity, and In this paper, our main goal is to study the structure con-
force fields of particle systems, e.g., suspensions, simple ligained in the spatial and temporal distributions of the number
uids, etc., is important for the fundamental understanding oflensity, velocity, convection, and force fields for an assem-
the dynamical behavior of these systems. The nature of thely of particles interacting via the Lennard-Jones potential.
number density and velocity fields has been studied exter-or a finite number of particles in a periodic domain these
sively in the past, both experimentally by using diffraction distributions were computed numerically by integrating the
techniques and numerically by simulations of model fluidsequations of motion. The particle trajectories and the distri-
(Verlet [1], Chandler[2], Hansen and McDonalfB], Boon butions, in general, are four dimensional, i.e., depend on
and Yip[4], Pusey[5], Wai et al.[6], and Wignallet al.[7], space and time, and thus the computational effort required to
see these papers for additional referehcé’@ese studies obtain the correlation functions of these distributions are
have shed considerable light on the mechanisms that are iffhormous. For isotropic systems, however, the radial sym-
portant in determining the microscopic structure of the par/Metry can be exploited by averaging over the solid angle,
ticle distribution, and have also related the microscopi(,and accurate estimates of the correlation functions can be
structure to the macroscopic properties of these systemg).btalned from_ a relatively small data set. .
Specifically, at length scales comparable to the particle oa. tF(')br ? pa_rtlclel styztetm ttr?e pflasle of tt_hle num_l?_er de_r|1_:r;]|ty
atomic diameterD, the spatial distribution of particles is Istrioution IS related 1o the aclual particie positions. fhe

nonuniform. The spatial nonuniformity of the particle distri- phase, therefore, changes constantly with time as the par-
yuniform. The Spe y ot the partic ticles constantly move around in a fluid. Furthermore, for an
bution is quantified in terms of the radial distribution func-

. s S . ) isotropic system the phase of a distribution by itselhat

tion, which is an oscnlatm.g functhn of the distance from the very important because the macroscopic equilibrium proper-
reference particle, and its Fourier transform. From thesgieg of these systems are related only to the correlation func-
studies we also know that there are many common featurggns that are independent of the phase. However, our nu-
between the radial distribution functions of fluidized suspenyyerical results show that the phase difference between two
sions(D~10"?~10"" m) and simple liquidYD~10"*"m),  jndependent distributions, such as the number density and
even though the particle diameters differ by several orders of ennard-Jones force fields, contains valuable information
magnitude(also see Gingrichi8], Kruh [9], Yarnell etal.  about the particle dynamics. In particular, we show that the
[10], Pusey[5] Wai et al.[6], Wignall et al.[7], Hansen and phase difference between the Lennard-Jones force and the
McDonald[3], Ottewill [11], Boon and Yip[4], Singh[12], = number density fields is a function of the wave number and
and Singh and Joseph3—15, for a detailed discussion and frequency. Wherw<w,(k) the phase difference is approxi-
additional references The fact that the radial distribution mately 7/2 and whenw> w.(k) it is approximately— /2,
functions of these mechanically different systems are thevhere w.(k) is a critical frequency for the particle system
same suggests that a comprehensive understanding of athat depends on the wave number and the system parameters.
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We will show later in this paper that the phase differencetransform can be used to describe their relative spatial ar-
between the number density and the Lennard-Jones foraangement, and the overall structure of the spatial distribu-
fields changes sign at the dimensionless wave numbers faion. For example, given a particle at the origin of the coor-
which the convection term is of the same order of magnitudealinate system, the radial distribution functiog(r,t)

as the Lennard-Jones force term. The critical frequencyepresents the probability of finding another particle at dis-
w:(K) at which the phase difference changes sign can bé&ncer from the origin. By definitiong(r,t) is given by

used to define a characteristic sound speed for the particle

system. Our numerical results also show that the qualitative , p ,

fc))/rm of the Lennard-Jones force field for<w (k) is dc?ffer— g(r,t)—f p(rr’,Dp(r’,tdr’. (2.2

ent from its form foro>w(k) and the mathematical type of . o . )

the governing equations for the particle system changes &fote in obtaining the correlation function, we halest the
w=w,(K). Specifically, it is shown that the area-averagedphase |_nformat|on contained in the number density dls_trlt_)u-
model equations of the particle system for waves with speeddon which, as we shall see later, can be used to obtain im-
waves with speeds smaller than the effective sound speed aligle systems. _ _

elliptic. This is a fundamental change in the model equations BY taking the Fourier transform of the above equation and
because for the elliptic systems the local solution depends o#sing the convolution-multiplication theorem, the above re-
the overall distribution in the domain, but for the hyperbolic lation reduces to
systems the local solution depends only on the distribution

along the upstream portion of the local characteristic.

In Sec. IV, we will show that in a theory where _the €ON" \where the dynamic structure factgi(k,t) is the three-
vection term is neglected the change of type predicted fro”@jimensional spatial Fourier transform ofr t), p(k.t) is the

the direct numeru_:al s_lmul_atlons cannot_ occur because thEourier transform op(r,t), andk is the wave number. In this
momentum equation in this case contains only two terms

4 th ber densit locit df ¢ article, we will use the same symbol to denote the distribu-
an & number density, VeloCity, and Torce Spectrums arf,, 4nq jts Fourier transform, and distinguish between the

linearly related. Therefore, the change of type of thetWO by the arguments.

Lennard-Jpnes particle systems can be predicteq only in. 4 \When the time average of the distribution function is ra-
mathematical model where the nonlinear convection term '?iially symmetric it takes the following simplified form:

included.

Finally, we note that when the correlation functions are 1 (T
obtained for a distribution the phase of the distribution is (g(Jr))y={(g(r))=lim T f g(r,t)dt, (2.9
lost, and therefore the phase difference between two distri- T 0
butions cannot be studied if wenly have access to their

correlation functions. Also note, in general, both the distri-""'* ) ° A
fgdially symmetric a relation similar t€2.3 hold for the

butions and the phase differences are three-dimensional. Fd - ) )
isotropic systems, however, by definition all properties, in_pme-averaged guantities because the Fourier transformation

cluding the phase difference distribution, must be the sami$ @ linear operation, i.e.,
along all directions. Thus the phase difference for an isotro- _ 2
pic system can be studied in terms of one-dimensional dis- (a(IkD)=<lp(IkDI). 29

tributions. We shall see later that this study of the phasene time average ki) ie k). is called the static
difference can be conducted in terms of the one-dimensional ,ct,re factor.g og(k.0), i.e., gk,

area-averaged distributions used by Sidg] and Singh Next we define the area-averaged number de t
and Josepfi13—19 in their study of the spatial distribution g, e planez to be g i)
of particles in fluidized suspensions.

g(k,H)=[p(k,1)[?, (2.3

where( ) denotes the time average. Also note wkefir|)) is

IIl. THREE-DIMENSIONAL AND ONE-DIMENSIONAL N(z.t)= J',mf,mp(r’t)dx dy. (2.6
AREA-AVERAGED DISTRIBUTIONS
The above mapping betwed{z,t) andp(r,t) is, in general,

We begin with a brief description of the three- ot invertible because the detailed information aboutxhe
dimensional distributions and their correlation functions used! X . . .
L . . and y coordinates of the particles is lost during the area
for describing the spatial arrangement of particles. The num: ; . i
. . o . . averaging. However, when the autocorrelation function of
ber density function specifies the coordinates of all particles ; . L = o
in the system p(r.t) is radially symmetric, i.e.g(r,t)=g(|r|,t), it is easy to

show that
p(r,t)=§1 a(r—Ri(1)), 2.9 g(lkl,t)|=4—7172 IN(K,1)|?, 2.7

wherer =R;(t) is the position vector of the center of thiln ~ where N(k,t) is the one-dimensional spatial Fourier trans-
particle at timet,n is the number of particles in the system, form of N(zt) (see Singh and Josedi5] for details.
and § is the delta functior(see Hansen and McDondld]).  Therefore, in this special case the autocorrelatiomN ¢, t)
Alternatively, the correlation functions and their Fourieris equivalent tog(|r|,t). Also note that wherp(r,t) is not
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radially symmetric, but its time-averadp(r,t)) is radially =~ whenm is the mass of one patrticle; is the velocity of the
symmetric, then a relation similar t8.7) holds for the time- ith particle, and;(t) is the force acting on thith particle at

averaged guantities time t. In a numerical solution, since the locations of all
. particles in the domain are knowm(t) for a system of
T _ . .
(N(K))= lim = f N(K,t)dt Lenna}rd Jones p:_;lrtlt':les can be computed by evaluating the
1w T Jo following expression:
li 1JTJN( t)expikz)dz dt n
=lim = z,t)expikz)dz 48e [
T _ ro—13_ -7y I
T Jolz fi=- o ,ZI (r®=05r; ") = (3.2
1 (7T
= lim —f J ffp(r,t)dx dy|expikz)dz dt
T T Jo J2| JxJy wheree is the depth of the potential well at its minimum,

is the effective Lennard-Jones particle diametegr,is the
expikz)dx dy dz vector from the particlé to the particlej, andr;; is the

magnitude of the vectar; . Also note that the term=j is

not included in the above summation. We will assume that

1 (T
lim —f r,t)dt
Im 7 Op( )

|

_ . _ . there are 864 particles inside a cubic computational domain

- fr(p(r»exmkz)dr— Jr<p(|r|))exp(|kz)dr with sidesL =10.229D. This corresponds to a reduced den-
sity p*=(nD3%L%=0.80726. We will also assume

=27(p([k[)), (2.8)  £=119.%g, where kg is the Boltzmann constant,

_ o _ m=6.63x10 ¢ kg and D=3.405<10 '° m; these values

wherei = — 1. Later in this paper, we will us@.8) for the correspond to real Argon.
interpretation of data obtained for our numerical simulations, A fourth order scheme is used to discretize the momen-
and also to 'understar)d the results of diffraction stu(ti;eg _tum equations for the particlgsee Hansen and McDonald
the Appendiy. A detailed study of the area-averaged distri-[3] for detail§. The force acting on the particlds computed
butions is also important becausely the Fourier transforms 5564 on all other particles in the computational domain and
of the area-averaged distributions are measured in diffractioggjr periodic images. At each of the six walls of the com-
studies. Another advantage of working with the area-pytational domain, appropriate periodic boundary conditions
average(_j distribution is thap the average moment.um'balanq;\re imposed. The discretized equations are integrated nu-
perpendicular to the averaging plane can be studied in termsgarically in time until a steady state is reached. The steady
of the area-averaged acceleration and forces acting on th§ie kinetic energy of the particle system is controlled by
particles in that plane. _ _increasing or decreasing the particle velocities by a constant

In order to study the time evolution of the phase differ-factor. After the steady conditions are reached, at each time
ence between two distributions we must work with the dis-stepy the particles’ coordinates and velocities, and the forces
tributions, and not their correlations, because when the COlacting on the particles are recorded in a data file. From this
relation functions are calculated the phase information igecorded data the correlations of the number density, veloc-
lost. Furthermore, the distributions such@s,t) andu(r,t)  jiy convection, and force fields are obtained during the post
and their phase difference distributions are three dimenprocessing phase. All correlations reported in this paper re-
sional. Therefore f_or anisotropic systems the phas.e d'fferrnainedunchanged/vhen the time step used in the numerical
ence must be studied along three mutually perpendicular diptegration scheme was reduced by a factor of five. Therefore

rections. For isotropic systems, however, the time average Qfe correlations reported in this paper are independent of the
the phase distribution along the three perpendicular direcgme step used.

tions must be the same; therefore it is sufficient to study the gyen though a direct numerical solution of theparticle
phase distribution along one fixed direction. The phase disgq (3.1) in a periodic computational domain can be easily
tribution of a three-dimensional distribution perpendicular togptained, it is advantageous to have a model that captures the
the averaging plane is preserved in the area-averaged distdgsential features of the particle system because the macro-
bution, edg., the phase ofr,t) along thez d|_reC'EI0n IS Pre-  scopic properties of the particle system can be obtained more
served inN(z,t), and therefore the phase difference distribu-gasily from the model equations. To develop a model for the
tions can be studied in terms of the area-averageg)article system we need two equations: one for the conser-

distributions, as we do in this paper. vation of number density and the other for the conservation
of momentum. The conservation of number density is given
I1l. EQUATIONS OF MOTION by

We begin this section by presenting the governing equa-
tions for the particles, and the numerical discretization p
scheme used to integrate these equations. The momentum 5 TV-I=0 (3.3
conservation equations for tmeparticles inside the compu-
tational domain can be written as
where J(r,t)=3,u(rt)8r —R;(t)) is the velocity current
du; . andu(r,t) is the velocity of the particle whose center israt

Mg =fi®, =10, @D 4t timet. The conservation of momentum is given by
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n

di(r,t)  dd(r,p) P Az [« f, 3|
=M +m(9—xq igluqu,;,epé(r—Ri(t)) S —LE E&(z—zi(t))}—ﬁ ;1 uu&(z—Zi(t))}
"d F(zt) a9 |
:mi:El d—ltjﬁ(r—Ri(t))EF(r,p). (3.4) = (; )_E 2‘1 uud(z—z;(t))|, (3.6

whereF(z,t) is the area average of ttkecomponent of the

HereF(r,p) is the force ar, ande, is the unit vector along forces acting on the particles with=Z;(t). Note for the
the p-coordinate axis. In the above equation we have usetiennard-Jones particle systef(z,t) dependsonly on the
the notation that implies summation with respect to the reinstantaneous particles’ centers. Fgz,t) =F(N(z,t)). The
peated indices. We will again assume that the particles inte@bove equations for the area-averaged distributions are exact,
act with each other via the Lennard-Jones potential, an@nd hence suggest the terms we must model to obtain the
therefore the exact force acting on the particles can be confime evolution ofJ(z,t). o
puted when the particles’ coordinates are known. The second 1N€ convection terms with derivatives along thendy
term on the left hand side of the above equation is the famil9iréctions:
iar convection term. Note E@3.4) is mathematically equiva-
lent to Eq.(3.1). In fact, we have simply used a compact 9 [uuN] and 7 [u,uNT,
notation to rewrite the set of particle Eq.(3.D. (2 ay

Equations(3.3) and (3.4) are not very useful unless a
model is available to independently estimate the averagBresentin the component of the momentum equation, drop
form of the right hand side o8.4). Several theoretical mod- Out when averaging is done over theconst planes. There-
els have been proposed to estimate the right hand side &'e the area-averaged momentum equation along tte
(3.4) which have been partially successful in predicting the'®ction is decoupled from the area-averaged momentum
essential features of the dynamic structure fattee Hansen €duations along th& andy directions. On the other hand,
and McDonald[3], and Boon and Yip[4] for a detailed the three components of the momentum equation coupled via

discussion and additional referengds these theories, how- the n(_)nlmear convection term are _decoupl_ed only when the
. X ! , agnitude of the convection term is negligible compared to
ever, the nonlinear convection term is considered to be sm

. . e other terms in the momentum equation. Hence it is ad-
a_mdnotlnc_:luded. Itis clear fron{3.4)_tha_t Wh_en_ the convec- vantageous to work with the area-averaged equations.
tion term is dropped the force distribution is linearly related

X e : o ; In the remainder of this section, we define the Fourier
to the time derivative of the velocity current V‘_’h'ch IN WM IS yansforms of all relevant distributions, including those
linearly relgted to the r_1umber density d|str|bu_t|or_1 by Eq'present in Eqs(3.5 and (3.6). The average forms of the
(3.3. That is, the equation syste(8.3) and (3.4) is linear,  ghecira presented in this paper were obtained by averaging
and hence its solution can be described in terms 6forF. e 100 000 samples. The area-averaged longitudinal force

The usual choice is to describe it in terms of the dynamicpactrum is important because it abpears in B®):
structure factofp(k,w)|? which can be measured directly in P P PP B

a diffraction study. Also note that in the linear case no addi- n

tional information can be obtained from the phase difference F(k,0)=>, f,(texdi(kz(t)— wt)]. (3.7
distributions. In this paper, we obtain the convection and j=1

Lennard-Jones force terms from direct numerical simulations

which show that the two terms are of comparable magnitudeThe transverse force spectrufykw):

The phase difference between the Lennard-Jones force and

number density distributions is also obtained from the direct n

numerical simulations. As we have noted earlier, the area- Ft(k,w)zz fyi(Oexdikz(t) - wt)], (3.8
averaged distributions are used in this paper because the =1

phase difference between the distributions can be studied ) ,
only in terms of the area-averaged distributions. is not relevant to the area-averaged equations because it acts

The governing equations for the area-averaged numbéF‘ the averaging p_Iane. However sir_lce the partic!e dynamics
density and velocity fields can be easily obtained by averag$ actually three dimensional, we will also study its form.
ing Eq.(3.3) and thez component 0f3.4) over thez=const The longitudinal convection spectrum:
planes. The mass conservation equation becomes

C,(k,w)=— ikE1 u’(exdikz(h—ot)] (3.9
=

ALY 35 | | |
at = oz appears in Eq(3.6), and therefore is relevant to the particle
dynamics. As we have noted earlier, our numerical simula-
tions show that for the Lennard-Jones particle systems its
where J(z,t)=f7..Z.J(r,t) dx dy is the average velocity magnitude iscomparableto that of the Lennard-Jones force
current along the direction. The equation for the momen- term.

tum conservation becomes The longitudinal current spectrum
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n N(k,w) andF(k,w) must be—#/2. However when the con-
J(k,w)=2 uj(tyexdi(kz(t) — ot)], vection term is neglected there are only two terms in Eg.
=1 (3.10: F(k,0) andJ(k,w). But, as we have noted earlier,
. this leads to a relatively simple case because weé-¢kiw)
and _the numbgr density spectrum are rgla}ted by (.B@’ =iomJ(k,w), and hence theameinformation is contained
.e., ikd(k,0) =iwN(k,»), and therefore it is sufficient 10, 'r () )" J(k w), andN(k,®). Therefore in a theoretical
stugy the_ dlstLrlbuttl)on OEI(IF“? ite the Fouri model where the convection term is neglected the dynamic
i yfusmgf Ee a3 gve ehinitions, we can writé the FOUnerqy ., cture factor is sufficient to completely describe the model
ransform of Eq(3.6) as system. However since our direct numerical simulations for
1 the Lennard-Jones particle systems show that the convection
iwJ(k,w)=— F(k,w)—Cy(Kk, o). (3.10  term is not negligible, to completely describe the particle
m dynamicsN(k,w) andF(k,w), and the phase difference be-

h . h tween them, must be known. Here it is important to note that
Int ehnext Isectlon,.t e a_:fa—ave.raged momentun(:Em_O), in the diffraction studies, and also in the direct molecular
and thus also 3)6is verified byindependentlycomputing  gynamic simulations, the dynamic structure can be obtained
the left and right hand sides for our numerical simulations. Itdirectly without any knowledge of (k,), C,(k,®) or the
is shown that for the numerical solutions, the averaged spegs,ace difference. But, as we will discuss in the next section,
tra of the left and right hand sides are approximately equ (k, ), C,(k,) and the phase difference are essential for
and the average phase difference between the terms ig0 or understanding the detailed dynamics.
as required by E¢3.10. The area-averaged E(.6), there- In general, the phase difference between the number den-
fore, correctly models the key features of the exact MOMENsjty and the Lennard-Jones force spe@¥g, is a function of

tum cons_ervatllon. _ hat | _ k and w. For our numerical results, the functional form of
Here it is also important to note that if the convection p — ‘s’ ohtained as follows:

term in Eq. (3.10 is dropped then the phase relationship
between the velocity current and the Lennard-Jones force is F(k,0) |N(k,o)|
P,:N(k,w)Ear§{< ’ , >

fixed In this degenerate case the phase contains no additional

information about the particle dynamics, and can be dropped. N(k,@) |F(k,o)]

However, as we will see later, when the convection term is

not negligible the phase difference between the number den- IV. RESULTS

sity and Lennard-Jones force fields is important, but is an ) ) ] ]

unknown to be determined by solving the governing equa- \We have already mentioned in the previous section that

tions, as we do in this paper. the numerical results were obtal.ned by integrating the system
The Fourier Spectra we have defined above are Comp|e)@_f Eqs(31) and(32) fOI‘ the partlcles in t|me The partiC|eS'

therefore, in general, we must study both magnitude an@goordinates, velocities and force fields were computed at

phase of these spectra. However, for the system on hand, t§&ch time step and recorded in a data file. The Fourier spec-

phase spectra are related to the particles coordinates, aff@ were obtained later by processing this data file. The av-

therefore no additional information about the particle dynam-£raged spectra presented this paper were obtained by averag-

ics can be deduced from the phase spectra. The phase difféfg over 100000 samples. The spectra are studied by

ence between two independent spectra, however, can be usel@tting isovalues in the two-dimension&, ) domain, and

to further understand the particle dynamics. In order to unWhen necessary by plotting one-dimensional sectionk for

derstand this idea, we first study the phase difference bew fixed. - _

tween the number density and longitudinal velocity current We begin with a brief discussion of the area-averaged

spectra. This can be easily obtained from EBy5) number density spectrum which for an isotropic system, as
we have noted earlier, is the same as the square root of the
argJ(k,w))—arg N(k,w))=0 dynamic structure factofsee Sec. I)l. The dynamic struc-

ture factors obtained for this study are the same as in the

where arg) is the argument of a complex number. To prove previous studiegsee Boon and Yip, and Hansen and Mc-
that Eq. (3.5 is satisfied by the numerical simulations we Donald for a detailed discussion and additional references
must also show that the above relationship betweemnd so we will only mention its key features. In Figajlwe
argN(k,w)) and argJ(k,»)) holds. The phase difference have plottedN(k,w)| for T=104 K, and the detailed pro-
betweenN(k,w) andJ(k,w) is fixed because there aomly files for o=0 are shown in Fig. (b) for T=104 K and 77 K.
two terms in Eq(3.5). From these figures we note that for both cases the maximum

The momentum equation, however, contains three termss for o=0. The maximum value is smaller for the case with
and thus the relative sign of any two terms can change as tHggher temperature, aridat the maximum is slightly smaller
magnitude of the third term changes. A simple analysis ofor the case with higher temperature; fb+=104 K the maxi-
Eg. (3.5 and(3.10 shows that the phase difference betweenmum value of 1628 is akD=6.59, and forT=77 K the
N(k,w) and F(k,w) must bex#/2, and betweerF (K, w) maximum value of 1706 is &tD=6.61. Furthermore, for
andC,(k,w) must be 0 orr. Clearly, these conditions must »=0 there are secondary peaks, but they are not integer mul-
be satisfied by the numerical solution, otherwise the particl¢iples of the main peak. From Fig.(), where the static
system cannot be modeled in terms of these equations. Alssiructure factors for the two cases are shown, we note that
note, if C,(k,w) is relatively small, as is the case in the long the dimensionless minima are the same as the set of zeros of
wave or continuum limit, then the phase difference betweerthe blockage functioisee the Appendjx From the isovalue
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plots shown in Fig. (@) we also note that the peaks and Fig. 2@ for T=104 K and the static Lennard-Jones force
valleys of [N(k,)| become progressively less pronouncedspectra|F(k)|=|/F(k,o)dw| are shown in Fig. @) for
with increasing|w|. Also note that the numerical results ob- T=104 K and 77 K. From these figures we note that the
tained forkD<(2wD/L) are sensitive to the size of the magnitudes of botHF(k,»)| and |F(k)|—0 in the limit
computational domain, and hence must be verified by changekD—0, which shows that in the long wave limit the
ing the ratio (/D). In this paper, we will simply ignore the Lennard-Jones force acting on the particles approaches zero.
numerical results obtained fiaD<(27D/L). We also note thdf (k,w)| is a symmetric function o, and
From Eq.(3.6) we know that the time derivative of the that there are three maxima of approximately equal magni-
local velocity current contains two contributions: one is thetudes, two of which are located symmetrically about khe
Leonard-Jones force field that accounts for the particleaxis and one is on thie axis. The maxima folf =104 K are
particle interactions, and the other is the convection contriat ~(kD=3.30, ®+9.15x10* s) and ~ (kD=6.59, »=0).
bution. The first contribution depends on the positions of theéNote that the dominant peaks at=+9.15<10' s andkD
particles, and can be computedactlywhen the particles’ =3.3, correspond to traveling waves with wavelength
coordinates are known. However, when the particles movd.9(D. It is interesting to note that the wave number at these
the Lennard-Jones forces acting on the particles change, agdminant peaks is approximately one half of the wave num-
therefore the spectra of the Leonard-Jones force field deperizer for the dominant peak dN(k,)|. In addition to these
on the motion of the particles. In the next few paragraphs, weeaks, fofT =104 K there are secondary peakglkdd=12.6,
present the spectra of the longitudinal and transverse comp@=0), (kD=17.40, »=0), and (kD=9.58, w==*9.65% 10
nent of the Lennard-Jones force fields, and then will studys). From these figures we also note that the secondary peaks,
the spectra of the convection term. for both =0 and w#0, become less pronounced with in-
The averaged Fourier spectrum |6f(k,w)| is shown in  creasing k. Finally, we note that the positions of the peaks
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FIG. 2. (a) Isovalues ofF(k,w)|(D?m/48e)
for T*=0.872,(b) the static Lennard-Jones force
spectra |F(k)|(D?m/48) for T*=0.872 and
0.643,(c) isovalues of|Fy(k, »)|(D?m/48:) for
T*=0.872.

and valleys along thk axis match the positions of the peaks maximum are, however, comparable to their respective val-

and valleys for|N(k,w)|. But, for |w|>0 only whenw is
smaller than a critical valuey,(k) the valleys of|F(k, )]
are at the blocked wave numbers. Also note that even
|w|>w,(K) there is a well-defined structure j&(k, )|, but

ues forF(k,w). This implies that the transverse and longitu-
dinal Lennard-Jones force fields act to drive comparable
fowave numbers at comparable frequencies.
The phase difference between the Lennard-Jones force

its form is different. We will discuss the reasons for theseand number density spectPay(k, w) is shown in Fig. 8a)—

changes in the structure % (k, )| later in this section.

(b) for two different values of the reduced temperature. From

We next study the spectrum of the area-averaged tranghese figures we note that for every wave nunider~2.0

verse forcgF,(k,w)| shown in Fig. Zc) for T=104 K. From
this figure we note thaf(k,w) is maximum at(kD=5.39,
0=9.6x10" s), but for =0 it is relatively small and the
structure we have seen iN(k,w)| and|F(k, )| is missing.
The qualitative structure oF,(k,w) is therefore different
from the structure we have seenNifk,w) andF(k,w). The
magnitude of the maximum and the valueskaind w at the

there is a unique frequeney.(k) at which the phase differ-
ence Pry(k,w) changes sign. Specifically, fap<w.(k),
Pen(K,w) is approximatelyn/2, and for w>w.(k) is ap-
proximately— /2. This result for the direct numerical simu-
lations agrees with the result obtained earlier from Eg%)
and(3.6) that the phase difference should ter/2. Thus the
phase constraint required by E@8.5) and(3.6) is satisfied
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FIG. 3. The phase differendé radiang betweenN(k,w) andF(kw), Pen(k, o), is shown.(a) Isovalues forT* =0.872,(b) isovalues
for T*=0.643,(c) for the two casew.(k) is shown as a function d, (d) for the two caseg(k) is shown as a function .

for the numerical simulations. The rati(k) = w.(k)/k is  tion term|C,(k,»)| shown in Fig. 4. From this figure we
defined to be an effective sound speed of the particle systerfirst note that the magnitude of the convection term is com-
In Figs. 3¢) and 3d) we have plottedw.(k) andc(k) as parable to the magnitude &%(k, ). However, forkD<~2
functionsk for the two cases shown in Fig(83 and 3b). the convection term is relatively small, and therefore in the
From these figures we note that(k) increases approxi- long wave (hydrodynamic or continuujnlimit the convec-
mately linearly withk, except close to the blocked wave tion effects can be neglected. This result is in agreement with
numbers where it is approximately constant or even dethe well-known results for this limit. But, fdtD>2 the con-
creases witkk. The effective sound speexdk), on the other vection effects are significant. Furthermore, for a giken
hand, is approximately constant, except close to the blockefC,(k,w)| is maximum forw~w(k), where the phase dif-
wave numbers where its value is locally minimum. Our nu-
merical results also show that the phases of the number den-
sity and the transverse force spectra a@ correlated.
Therefore the transverse force field is not drivenNiz,t).

The above results for the phase difference between the
longitudinal force and number density fields suggest that the
dynamical nature of the particle-particle interaction changes
fundamentally atw=w,(k). In particular, as we have noted /
earlier, the local minima ofF (k,w)| for w>w(k) are dif- eeny 8
ferent from the minima of the static structure factor. Along
the boundanw=w.(k), the magnitude of (k, ) is locally
minimum, and thus the dynamics at these wave numbers is
dominated by the convection term in E(B.6). We may L
therefore conclude that the dynamics of waves with speeds ° %
greater tharc(k), and waves with speeds smaller thek), o
is fundamentally different.

To sort out the possible reasons for this change in the FIG. 4. The magnitude spectrum @&,(k,w)(D2m/48) is
particle dynamics, we next study the spectrum of the convecshown forT*=0.872.
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w<w(k) the right hand side of3.6) is relatively small be-
cause the convection and Lennard-Jones terms cancel each
other. The fact that the sum of these two distributions is the
same as the velocity current distribution also demonstrates
that the distributions are correct.

V. CHANGE OF TYPE

afsh
We have noted in Sec. lll that for a Lennard-Jones par-
ticle systemF(z,t) dependonly on the instantaneous distri-
bution of N(z,t). The functional dependence &f(z,t) on
N(z,t) however, is not known. For our numerical simula-
tions the averaged magnitude spectra of these distributions
were presented in the previous section, but the functional
relationship between the two is difficult to obtain from the
numerical spectra. In the previous section we also noted that
the phase differencegy(k,w) betweerF (k,») andN(k, )
depends ok and w: it is +7/2 for w<w.(k) and —=/2 for
w>w:(K). The physical and mathematical significance of
this change in the phase difference is difficult to understand
because the governing equations are highly nonlinear. In this
section we show that this change in the sigrPaf (K, w) is
a consequence of the change of type of the governing equa-
tions, and then discuss the physical significance of this result.
In order to understand the mathematical significance of
the change in the sign d?r\(k,»), we next do a simple

(s

oy P e sy a0t analysis of the governing Eqé3.5 and(3.6). We take two
0o 5 10 15 20 25 30 3 40 approaches: in one we drop the nonlinear convection term
o but carry the full form of the force term, and in the other we

keep the convection term, but linearize the force term. In
both cases the result obtained is the same. In the first ap-
FIG. 5. (8) The magnitude spectrum of the right hand side of proach we use the fact that the phase difference between
(3.6) times (D?m/48¢) is shown forT*=0.872,(b) the magnitude F(k,») andN(k,w) is known to writeF (k,w) as
spectrum of the left hand side ¢8.6) times (D?m/48¢) is shown ' ' '
for T*=0.872. T
F(k,w)=exp<ii E+i arg{N(k,w)]>|F(k,w)|,
ference betweeN(k,w) andF(k,») changes sign. The con-
vection term, therefore, plays an important role in determinyyhere the plus sign applies wher<w,, and the minus sign
ing w(k), and thus cannot be neglected in a theoreticahpplies whenw>w,. We next substitute this form for
analysis of the particle systems. F(k,®) in the Fourier transform of the linearizé¢d.6). The
Finally, in Fig. 5a) we study the Fourier spectrum of the resylting equation can be written as
sum of the two terms on the right hand side(8f6). Note in

obtaining the sum the phase difference of the two terms is T
properly taken into account. From this figure we note that the  TwJ(k,o)=exp i 5 +i ardN(k, )] [F(k,w)].
sum is maximum at- (kD=3.39, w=+1.05x10"% s), and

its secondary maximum is #kD=10.21,0=+1.08<10"  From the above equationd(k,) can be eliminated by us-
s). For w<w.(k), however, the sum is relatively small. ing the Fourier transform of Eq.3.5: ik J(k,)

Therefore, the time derivative af(k,w) is dominated by =j,N(k,®). The resulting equation, after some manipula-
waves traveling with speeds greater than the effective soungons can be written as

speed. The spectrum of the left hand side of E36) was

also obtainedndependentlyand is shown in Fig. ®). A Cw? o
comparison of Figs. ) and 5b) shows that the spectra of | - N(k,w)=ex;{ 5
the left and right hand sides ¢8.6) for the direct numerical

simulations are approximately identical, including the posi-This equation can be simplified further if we note

tions of the primary and secondary maxima, and their values.

Finally, we note that the qualitative form of Fig(eh is sig- N(k,w)=expi ard N(k,0)])|N(k, )|,

nificantly different from those of the Lennard-Jones force

and convection spectra shown in Figga)2and 4, respec- and cancel exp arc[N(k,»)]) from the two sides. After this
tively. This change in the qualitative form is a consequence&ancellation, we get

of the fact that these two terms are of the same approximate 5

magnitude, but the phase difference between them for w—=exp( i Z_i z) [F(k,o)]
w<w(K) is 7 and for w>w.(k) is zero. Therefore for @ T2 2

+i ardN(k, )] ||F(k,w)].

IN(k, )|
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The above equation can now be solved égr signed to study the phase differences. These experimental
results for the phase differences can also be used to check the

o=k |F(k,w)|]* for 0> validity of the Lennard-Jones model for the real fluids.
IN(K, )| ¢ In conclusion, the above discussion suggests that the
K 12 change in the sign d®gy(K,w) atw=w(k) is a result of the
=i\/E[|F( )| for w<o.. change in type of the governing Ed8.5) and 3.6. Further-
IN(k, )| ¢ more, for kD>~2 (or wavelengthA<~3D) the area-

o ) ) averaged distributions for slowly moving waves are gov-
Therefore the characteristics are imaginary éf o, and  gmed by an elliptic system of equations. This suggests that
real for o> w. . This implies that the governing equations arepe change of type is finite size effect because it exists only
elliptic for w<w,, and hyperbolic foro>w; (see Courant for wavelengths comparable or smaller than It is, how-
and Hilbert[16]). . ever, difficult to give aprecisereason from a physical point
In the second approach, we assume the following form fopy yiew for this fundamental change in the particle dynamics.
F(z.1): One possible explanation for this change is that as a particle
J of diameterD moves, its motion is instantaneously felt
F(zt)=*K — N(z,t), (5.1)  within the volume occupied by the sphere. In a theory based
9z on the particle centers this instantaneous transmission of the
: - . o . change in the position and velocity of the particle center, up
whereK>0 is the coefficient of linearization, and the minus . " istancdd/2 from the center, gives rise to the elliptic

sign applies whenw>w, and the plus sign applies when b . :
. . ehavior observed fotr's comparable or smaller thah. For
w<w,. Clearly, the above relationship betweEfz,t) and long waves(kD<~2) this effect does not exist for any fre-

_N(z,t) satisfies the two requirements we have_ stated ear"ebuency, and thus the response of the particle system in this
.e., F(z,1) depends orN(;,t), and the ph_ase difference be- limit is consistent with that of a compressible fluid.
tweenF(z,t) and N(z,t) is =#/2. Note in the long wave

limit Egs. (3.5, (3.6), and (5.1) with the minus sign are
mathematically identical to the equations in gas dynamics:
(dplat) + (dupl 9z) =0; and ©uplat) + (duupl 9z

= —c?(dpldz), wherep is the density and is the speed of We have studied the time-averaged Fourier spectra of the
sound. The next step is to substitute the above form fopumber density, velocity, convection, and force fields for an
F(z,t) in (3.6), and find the characteristic directions@f5  assembly of spherical particles interacting via the Lennard-
and(3.6) (see Courant and Hilbeft6], and Whithan{17]).  jones potential. The results were obtained numerically by
It is easy to show that the characteristic directions are giveRolving the equations for the particles in a periodic domain.

VI. CONCLUSIONS

by A detailed study of the phase difference between the
Lennard-Jones force and number density spectra shows that
d_Z: ut V= (—K). for every wave number there is a unique frequency at which
dt the phase difference changes fran2 to —#/2. A simple

o . analysis shows that the change in the sign of the phase dif-
Theref_ore, the charac';erlstlc_s are real, and the system is hYsrence implies a change of type of the governing partial
perbolic, when the minus sign is used (8.1). Since our gitferential equations from hyperbolic to elliptic. This funda-
numerical results show that fdtD<~2, the minus sign  mental change in the particle dynamics is also reflected in
holds for allw's, in the long wave limit Eqs(3.5 and(3.6) he qualitative forms of the spectra. In particular, the maxima
are hyperbolic. The equations in gas dynamics are also hysng minima of the Lennard-Jones force field are the same as
perbolic. A direct comparison of3.5) and (3.6) with equa- oy the static structure factor only for waves with speeds less
tions in gas dynamics shows that the change of sigibi)  than the effective sound speed. Finally, we note that the con-
is equivalent to assuming that the functional dependence Qfgaction effects are of the same order of magnitude as the
the pressure field on the gradient of the density field changesennard-Jjones forces, and therefore must be included in a
sign. _ , o _ mathematical model of the particle systems. The numerical
The mathematical properties of the elliptic and hyperbolicegyits for the phase difference and convection spectrum are
system of equations are well known, and are given in anynieresting, and should be compared with the analytical re-
elementary book on the partial differential equatidsse  gjts where the nonlinear convection term is retained as well
Courant and Hilberf16] and Weinbergef18]). We briefly 55 \yith the experimental data for the real liquids. At present,

note that for.an_elliptic.system the_IocaI solution depe_nds Ohowever, this comparison is not possible because these ana-
the overall distribution in the domain and the problem is We"lytical and experimental results are not available.

posed only if it is posed as a boundary value problem. On the
other hand, for a hyperbolic system the local solution de-
pends only on the distribution along the upstream portion of
the characteristic passing through the point under consider-
ation. We remind the reader that the exact dynamics of the In this appendix we briefly discuss the results obtained by
system of particles is governed by E§.1), and Pgy(k, ) Singh[12], and Singh and Joseph3-15 for the area frac-

is obtained by solving these equations. Therefore, there is tion, and their importance in the interpretation of the diffrac-
fundamental change in the particle dynamicswatw (k) tion data. They have obtained the following expression for
which, in principle, can be observed in an experiment dethe area fractionp, in terms ofN(z,t) (see the derivation

APPENDIX
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given in these references for a better physical understandingr,t)=s, is uniform within the particles, then
of this equation Sa(z,t)=pSyda(z,t), wherep is the area over which the

R averaging is performed. In this case, after ugiAg) we get

qsa(z,t):f RN(x+z,t)7-r(R2—x2)dx, (A1)

whereR is the radius of the particles. Using this expression |(6,t)~p?s3| ¢a(k,t)|?=p?s]
they have shown that whe¥ is the Fourier transform class,
then

372
T erkRINGl
(A4)

R3
ba(k) = —3— O(KR)N(k,1), (A2)  where ®(kR) is the form factor for a single particle. The
form factor is thesameas the blockage function because the
where®(kR) =3[sinkR/(kR)®*—coskR/(kR)?] is the block- ~ scattering density is uniformly distributed within the par-
age function ana,(k,t) is the Fourier transform ap,(z,t).  ticles. Furthermore, fronf2.8) we already know that when
Note that® (kR)=J,,(kR)/kR, whered,, is the spherical {p(r)) is radially symmetric, thex|p(k)|?) is proportional to
Bessel function of order 1/2. The set of zeros@{kR) is:  (|N(k)|?. Therefore an estimate dfp(k)|?) can be obtained
2kR=8.98, 15.45, 21.81,.... FrorfA2) Singh and Joseph from the angular distribution of the time-averaged scattered
have concluded that when the number density is in the Folintensity (1(6)). Also note that even wheflp(r)) is aniso-
rier transform class, then the dimensionless wave numbersiopic (I(6)) is related to the area-averaged distribution along
kR, for which ©®(kR) is zero, areblocked(i.e., are missing  the scattering vectofsee(A3)]. A complete picture of the
in the spectrum of the area fraction. We would refer to thes@nisotropic distribution, however, is much more difficult to
wave numbers as “blocked wave numbers.” obtain. But, in principle, its approximate form can be ob-
The above result for the area fraction is also useful in thggjneq by using a deconvolution algorithm on a set of data

interpretation of diffraction data. Specifically, the angularypiained for different orientations of the scattering vector.
distribution of the scattered intensity6,t) can be related to The physical significance ofi(6) in (A3) and (A4) is
the area-averaged one-dimensional spatial distribution of thﬁsually given in terms of the radially symmetric distribu-

area fraction, wheré is the angle at which 'ghe Intensity IS tions. In particular, the time average of the angular distribu-
measured. In order to show this, we start with the following

. e ttion (1(0)) is described to be the product of the form factor
well-known expression that relates the spatial distribution o d the radiallv svmmetric structure factor. The form factor
the scattering density(r,t) to the scatterecelastig intensity ally sy ' uctu )

(see Cowley[19)) of a single particle is theq filtered_gut QK 0)), b_ecause it
does not have any dynamical significance, to give the struc-
2 ture factor. This explanation, however, fails to stress the fact
that(I(6)) is related to the time average of the Fourier trans-
form of the area-averaged scattering density. Even more im-
Here the integral is over the scattering volumhands(r,t) is  portantly, it fails to emphasize that whesfr,t)=sy within
zero outside of the particle, and the angkesin™X(kxn/4) the particles, the zeros @f(6)) are indicative of the funda-
where\ is the wave length of the radiation used dnis the  mental property that the spatial Fourier transform of the area
wave number being explored. Let us assume that our coorovered by the particlesannot contain the blocked wave
dinate system is such thatr=kz, i.e., thez axis of the numbergsee Eq(A4)]. Finally, we note that if in the scat-
coordinate system is parallel to the scattering vektdrhen,  tering experiments wenly have access to the intensities, i.e.,
the above expression reduces to the magnitude squared of the Fourier transform of the distri-
2 bution functions, the phase of the distributiooannot be
|(9,t)~U studied experimentally which, as we shown in this paper,
z
=Usa(z,t)exp(ikz)dz
z

|(a,t)~fvs(r,t)exp(ik.r)dr

JJs(r,t)dx dy|exp(ikz)dZ
xJy

contains important information about the dynamics of the
2 particle systems.
: (A3)

| wish to thank Dr. Todd Hesla for his constructive criti-
wheres,(z,t)=[,f,s(r,t)dx dy is the area average of the cism of the paper.
scattering density. If we assume that the scattering density
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